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ABSTRACT

The paper deals with life distributions for coherent

systems of components. Two major questions are diseussed:

(i) estimation of system life from data,, or knowledge, on

sompon~ent lioes, and (1i) asymptotic models. Both ques-

tions are related to extremes of a sequence of random

variables through the path set and out set decomposition

of coherent systemo, which reduce a coherent system to

either a parallel or series system. Since for theme do-

compositions, the classical theory of extremes of inde-

pendent and identically distributed random variables

does not provide an acceptable approxition, the emphasis

is on dependent random variables, or when the random

variables are not identically distributed. The inequalities

presented when discussing question (i) above are applicable

sot only to extreme value problems but to an arbitrary

mualtivariate distribution using lower dimensional margIaLs1.
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The asymptotic models are discussed in the light of

hazard rate properties of the limiting dirtributions

of the models. A parametric family of distributions is

proposed for approximating life distribution~s whose

hazard rate is bath-tub shaped, thus representing a

burs-in period, an accidental failure period and a

wear-out period.

Key words and phrases: coherent system, component life,

system life, cut set decomposition, path set de-

composition, dependence, extremes# inequalities,

multivariate distributions, asymptotic models,

failure time distribution, Weibull distribution,

hazard rate, burn-in period, aocidental failure

period, wear-out period, bath-tub shaped hazard

rate.
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1. Coherent systems: definitions and basic

properties

Let a system consist of * components. We shall refer

to a as the size of the system. Our interest both in each

component and in the system is whether it functions or it

failed to function. By measuring time from a fixed origin,

we introduce to the J-tk component the random life length

X : the first point in time when component j fails to

function. At ea-k fixed point x of time, we define

I ) 1 if X>x,
1(x)

0 if X x;

that is, I(x). the indicator of the event {X,)x, is

one if the J-th component functions at time x. and zero

if it failed bifore or at x. When it does not lead to

confusion, we sometimes suppress the variable x , and

we refer to I as the indicator of the J-tk component's

functioning or failure.

We aseemo tat, at any given time x, the function-

Ing and failure states of the components uniquely determine

whether the system functions or failed to function. In

other words, there is a function S of a variables,

which takes the values 1 and 0 only and such that

S - Sx - S( 1(x), 12 (x),..., Ia(x)) equals one if the

.. .... . . . . .. . ... .. lia " " " -" ... . ..- .. . . . l .. ... -" L. ' "b' " " 4
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system functions at time x md zero if it failed before

or at x. We call S the structure (function) of the

system. The time T to the first failure of the system (1
is called the sstem life, or on some occasions, the

failure time.

Notice that each variable of S is either zero or

one. When a variable of S is increased from zero to

one (that is, a failed component Is replaced by a funo-

tiosing one), we assume that it could not have a negative

effect on S. In other words, if S = 1 when IW(x) = 0

(that 1., the system functions although the J-tk component

failed), then S = 1 also when I (x) - 1 (that is, the

system also functions when the J-th component functions),

assuming that there is no change in the states of the

other components. When this evident requirement is satis-

fied, we call the system (or the structure S) coherent.

The mathematical equivalent of the above described property

is that the structure function S is nondeoreasing in

each of its variables. We shall also assume that each

component serves some purpose in the sense that S is

not constant in any of its variables.

There are two special systems which will play specific

roles in the sequel and which we define below.

Series system. If a system fails as soon as one of
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its components fails, we call it a series system. For

such a system, 3 = 1 if, ad only if, each 1 1.

Hence

S(I It 129""0 In) = Min(.11 0 1210""9 In)*

Similarly, by definition,,

T = min(X It X2 t***t Xz).

Parallel system. We call a system parallel, if it

functions an long as one of its components functions. It

thus follows that

s(11t 12#***t In) -Max(1, 129*0*9 In)

and

T =max(X1 , iXt***q iM)e

Since each I is either 0 or 1,

Min(11, 1206 I 1 -11200*- in e

and

1 - Ma(11 It29***t InA) - (I Ii I)(I - 1 2 )0.6(1 I a )* a

where, on th. right hand sides, ordinary multiplication

is applied. This flexibility, of course, is not valid for

asy other variables (other than those taking the values

o and 1 only), and thus an expression for S may not

Ve a quiek tool for finding T am a function of the X 0



Tke identities (1) sad (2) also indicate that one can

have several expressions for S (which are naturally

identical in value), ad the same is true fo* T. There

is, however, one expression for Sp in which only the

functions max ad min occur, ad in this form, if

I is replaced by Xit then S transforms into T.

For formulating this special representation, let us

start with an example.

k - out -of - a system. A system is called a

k-out-of-a system, if its size is a and if it fume-

tion. if, and only if, at least k of its components

functioa (1 kc a). With the delta function

=11if ii~j

0 otherwise,

evidently

8(I It 1 29""Of Is) A(1 1 + 1 2 In k). ~

Th, definition also yields that

where 1 r:Z Is the r-th order statistic in the sequence

It1, 1:~ 1 a ]Lm2:n !5a:n ) low, ic



1n-Icl:a =mxmia(Ii 9 1 *** ii

and

LA(Id 'L2.+Ilnk) = zax~min(lij 1Ij,.@2ejOO Ii)]

where 1: l 1i 2 -< .. <i-k5n, and the maximum is taken

over all the possible choices of the k subscriptsi,

1 S3 5k, we expressed 3 and T by the same function of

the variables I and ,i l!5j 5zp respectively.

The expressions for S and T as the maximum of

oze variables shows that a k-out-of-nt system can also

be viewed as a parallel system. Indeed# if we fix the in-

tegers 1: l41 C i < a and we connect these k

*onposents into a series system, theni the parallel system

whos somponents are the just constructed (a) series
system is equivalent to the original k-out-of-n system

in tkat their structure functions sad their system lifes

are identical.

The fact that, by suitable grouping of components, a

system can be reduced to a parallel system is not special

to the k-out-of-n system. Indeed, an arbitrary coherent

system can be reduced to a parallel (or a series) system.

For proving this facto we introduce the following concepts.

Minimal path sets. A path not of a ohkerent system is

a set C of components such that if each member of C



F' functions then the system functions. A path set is mini-

mal, if the removal of a single element from it results in

its failure to remain a path set.

Minimal Cut sets. A set C of components is called

a cut set if the system fails whenever each member of C

fails. A out set is minimal if no element can be removed

from it without violating its out set property.

lRow, a coherent system which is capable of functioning

is necessarily bot~a pa$h set and a cut set. Therefore,

every such coherent system has at least one minimal path

set and one minimal cut set. Let Al, A 2,..., A pand P

C 2,.., Cm be the distinct minimal path and cut sets,

respectively, for a given coherent system. Then.,by defini-

tion,

15(1 263I)=t5p JIi

mini ax Ii

and

T ARXjinA Ij mi j m x j .

Putting

Ut min Xi , max Xj fA t C t
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we obtained

T- max Ut  six Vt1 ISt : -p 1 ! at

In other words, the system life of an arbitrary coherent

system is an extreme value (maximum or minimum) of a

suitably chosen sequence of random variables. Its distrib-

utiom function, which we call a failure time distribution

(for coherent systems), is therefore as extreme value

distribution in some appropriate model. It should be

empkasised that independence and stationarity caunot be

assumed kere even if tke orogonal components are believed

to function independently (suck a case is rare though,

see the last but one paragraph in the next section in

this regard). Because the minimal path sets At (or the

minimal out sets Ct) are mot disjoint, the random variables

U t and Vt of (3) are strongly dependent. Tkeir dependence

is determined by the structure of the underlying system

and by the dependence of the original components. Hence,

tkeir dependence is never a matter of arbitrary assumptions.

Tkus the study of these distributions is an integral part

(of the theory of extremes for dependent models. While

suck a theory is well developed in Chapter 3 of the present

autkor's book, Galambos (1978), we shall discuss some points

of tkis theory as they relate to failure time distribu-

tions. Altkougk in the present paragraph we defined failure

time distributions in terms of cokerent systems, muck of

AMMON4
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what is to be said also applies to failure times of dam,

when failure is caused by high floods; of sir ouality,

when failure is defined by the fact that some specific

pollutant exceeds a given level of concentrution, and to

other diverse fields. We slal], however, remain in our

discussion at coherent systems, and we use the notations

of the present section througkout the paper.

The concepts and relations discussed here first

appeared in the paper Birnbaum et al. (1961). Later

extensions of these relations are nicely brought together

into a theory by Barlow and Proachan (1975). Our discussion

here does not overlap with the content of this book.

2. Asymptotic extreme value distributions

as failure time distributions

We have seem tkat T cam always be expressed as the

maximum or the minimum of some random variables. Sinze in

these representations either p or m is large for a system

witk a large number i of components (recall that we

agreed not to oonsider nonessential components defined as

components in whose indicators the structure function S

is constant), we assume for the general discussion that

Tr max Ut o(4)
1!5 t 4p

with p large. Now, if the distributions and the inter-
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dependence of the U t  are known then the distribution of

T is uniquely determined. Hence, only that case presents

a problem when either the distribution functions Pt(x)

= P(Ut -x), 1!-t <p, or the dependence relation of the

Ut are unknown. In suck cases, an approximation becomes

necessary. It is shown on p. 90 of Galambos (1978) (and

further explored in Galambos (1981)) that a reliable

approzimation to the distribution of T cannot be obtained

through an approximation to Ft(x). Rather, one should

develop a dependent model for the Ut , evaluate the

possible limiting distributions for the maximum in that

model, and one of these possibilities is to be applied

as am approximation to the distribution of T.

There are a number of dependent models for which

the mathematical results are at an advanced stage (altkogk

far from complete). These are described in Chapter 3 of

the mentioned book of the present author, from which we

quote the following results.

(i) Approximation by the olassical model (the Ut

are independent and identically distributed)

is ver rarely justified, but when it is appli-

cable, then the failure time distribution is

Weibull.

(ii) The assumption that the Ut  form a sequence of

exchangeable random variables is mathematioalo

I __ _ _ _ _ _
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always justified. But, because of this gener-

ality, the possible limit laws for the maximum

form a very large family. The investigation of

the properties of some subfamilies of these

distributions would be a very important task.

(It should be remarked that, contrary to the

claim in the paper Zidek, et al. (1979), the

sequence U t cannot, in general, be considered

as a segment of an infinite sequence of ex-

changeable variables; only finite exchangeabil-

ity is justified.)

(iii) There is a general dependent model, in whisk

the possible limit laws for the maximum coincide

with the distributions whose hazard rate fune-

tion idefined below) is monotonio (see Sec-

tions 3.9 and 3.10 in the quo*ed book). Beoause

of the significance of this result to engineers,

we discuss this conclusion in more detail.

Engineers have recognized for a long time the impor-

tance of the hazard rate function of a failure time dis-

tribution. Let us first give the definition of hazard

rate.

Lot XZ 0 be a random variable with distribution

function (x) and with density function f(x) - F'(x). Then

the hazard rate r(x) of X is defined by the limit relation
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r(x) im P(X-x + x I x>,).J x=O

Am easy calculation yields from this limit relation

r(x)= .
1 - F(x)

Wkile this latter form is a convenient formula for

actually calculating rx), the definition of r(x) Is

what makes it applicable. When X represents a random

life, then the conditional probability P(X <x +g x [Xax)

expresses the probability of X's failing in the short

interval (x, x + rx), given that X has survived beyond

x. It Is apparent to an engineer that a new system of

oomponexts whose life is represented by I may have

some positive probability of failing immediately after

production, but this probability decreases as tine

passes (burn-in period). On *ke other hand, am old system

of components is more mad more likely to fail as time

passes (ageing or wear-out period). Between the burn-in

and wear-out periods, for most systems, it is accepted

that only accidents may cause failure Te stochastic

definition of accidents Is either by constant kazard rates

or by the lack of memory property

P(X >x+ yIX >x) =P(l>y).

See Section 1.5 in Galambos and Kotz (1978) to see that

these two seemingly different definitions are equivalent.
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Noticing that constant hazard rate can also be viewed

as both nondecreasing and noninoreasing, that is monotosdct

we conclude that the life length of a system can be split

into three periods, in each of which the hazard rate of

the life distribution is monotonic. It is very pleasing

to see that the mathematical theory through structure

functions and extreme value theory led to a similar

conclusion.

Returning to the simple argument of the preseding

paragrapk, we an also find it reasonable that the smaller

is the change in the hazard rate the closer we are to thi

accidental failure period (that is, sharper decreases

occur at the beginning of the burn-in period than later

in this same period and sharper and sharper increases in

the hazard rate are experienced during the wear-out period

an time passes). This, when translated into mathematical

termos implies that the hazard rate function is oonvex

which, together with the three periods discussed earlier,

is frequently referred to as the hazard rate function is

batk-tub skaped.

A good approximation to most empirical results can

be obtained by the following bath tub shaped hazard rate

function:

SA(x -a) 2 +ca if O:SX.a

r(x;ApagoBDb) a if asz.b

B(X- b)2 + if x!b•
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Tke constant c >0 represents the constant hazard rate

during the accidental failure period (a,b), while the

birn-in period lasts upto the point a and the wear-out

period starts at b . The constants A O and B>O

are shape parameters. The choice of a quadratic function

is arbitrary here, but when an approximariom is to be

found on an empirical basis rather than by theoretical

arguments, the the shape parameters give sufficient

flexibility to get a good approxima:ion. We add here

that there is no result regarding the statistical analysis

of the distribution whose hazard rate is r(x;Aga,c,B,b).

Its study would be very useful.

There is, of course, a well determined rekation

between a distribution function and its hazard rate

function. Namely, if we write (5) in the form

r(x) - n
dx

tken we immediately see tkat (x) uniquely determines

r(x). On the other hand, we get by integration from tke

above relation,

1(X) - I1- exp{I 'r(thdt. x>O.

We thus see that when the hazard rate is constant, then

the distribution function is exponential. In partioular,

during the accidental failure period, failure time distribu-
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tions are always exponential. This observation leads

us to the following important conclusion. Assume now

that all components as well as the system achieved the

accidental failure period. This means, that both the

components and the system have exponential failure

distributions (for a certain period of time only). It

then follows from a result of Esary et al. (1971) that

the components, with the exception of series systems,

are not stochastically independent. That is, one cannot

construct a single structure other than a series sy on

in which the components would function independently

(and which system would achieve an accidental failure

period). This Is a very important conclusion because

several estimates on reliability are developed in the

literature under the assumption that the components are

Independent.

Finally, we remark that there are a number of

characterization theorems for expozentiality (see the

book Galambos and Kots (1978)) which can be used for

testig whether a system is in its accidental failure

period. In most casesp those limited characterization

theorems are sufficient when one assumes a priori that

the underlying distribution is of monotonic hazard rate.

A typical result of this nature can be found in Aksa-

nullak (1977).
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3. Estimates on failure time

distributions

We have emphasized in the previous section that

componente for most structures cannot function indepen-

dently of each other. At the same time, we may know

exactly the distribution of component liVes, mainly

through characterization theorems. This leads us to the

problem of estimating failure time distributions by

the distributions of component liVes under some assump-

tion of dependence of the components.

We use the path set and out set decompositions,

in view of which structure life is an extreme of

"oomponent lives" (where *component" is either a minimal

path set or a minimal out set). Through this approach,

the mathematical problem is the estimation of the

distribution function H,(x) of

T- max(U1 , U2 ,..., U )

under some form of dependence of the U and under the

assumption that the distribution functions Ft(x) -

P(Ut< x) are known.

There is one concept of dependencer the so called

association of random variables, for which there is an

extensive literature with reliability emphasis (see

Barlow and Proechaa (1975) and Natvig (1980)). However,
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these works deal with estimating E(T) in term" of E(Ut )P

1 <t $Ip, rather than giving estimates on H (x).

Since we deal with distributions, we express do-

pendence through distributional assumptions. Tke simplest

distributional assumption isoof course, when only bivariate

distributions are involved. Far simplicity, we introduce

the notations A A x= y X

3 lop(x) - Slop a ± P(A3)

329p (X) a 52,p M P(A1inA~)

and we let ap, - nP(x) stand for the number of those A3

whick occur* Then H a (x) mP(mp a 0)9 Slop aE(np)

and 23o + B1lp = E(up) This latter meaning of S lop

and 32pp makes then appealing to the applied statisticiau,

while their original definition is the useful form in

mathematical arguments. It is slightly more convenient

to state results for 1 H,(x) - P(am>,,) than for H,(x)

Itself, and we shall do so below. Let us consider esti.

mates of the form

a PS l~ 3 , + b 82, (6)

where a, bg a and d are constants (which, in principle,

my depend on x suppressed In all notations).
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The best lowvr bound in (6) is known (Kwerel (1975)

and Gelambos (1977)), according to which a and b

should be of the form a - 2/(Ictl) ad b - -2/k(k~l),

where l-k..p in an integer. It in then easy to find

the optimal k which equals [.S,,S,]+ 1, where [y]

signifies th.e integer part of y. (Notice that k -1 yields

the classical estima$e by the method of inclusion and

exclusion.) For the upper bound in (6), only partial

results are available. The best known result is c - I

and d = -2/p (Kounias (1968) and Galanbos (1975)).

Before proceeding witb the discussiox of the estimates

in (6), notice the following important fact. The results

quoted in the previous paragraph are such that the coef-

ficient. a~b~o and d do not depend on x. Hesoe, they

remain valid if we redefine A3 Now, if A

then

01- - lUle<X1  U2 <X2 9406, U X 1 ~

and thus (6) provides estimates on the p-variate distribu-

tion of the u in termts of univariate ad bivariate mar,-

ginals. These inequalitites should be taken into account

when one is interested in constructing sultiveriate dis-

tributions with given (univariate and biveriate) marginals*

Let us return to (6). Since PORn> 1) is related to

the distribution of the maximum of the UP, one would like

to get suitable extensions of (6) to P(m- r), r> 1,,
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which is relevant for the distribution of the (p-r+l)-st

order statistic of the Uj b Two methods of vroof of (6)

lead to interesting results in this direction. One proof,

which roughly says that (6) is valid for arbitrary (de-

pendent) sequence of U if it is valid when the U are

i.i.d., implies that a set of coefficients in (6) deter-

mines a set of coefficients for estimating P(mp >r)

in the form of (6) (Galambos and Mucci (1980)). The

other proof, introduced in Galambos (1977), provides a

technique which can be used with success in more general

cases than (6) (for example, to P(mp>r) for any r>l,

and with bounds not necessarily linear). On this line

of extension of (6), we mention Sathe et al. (1980).

For earlier results on inequalities of the nature of (6),

see the survey at the end of Chapter 1 of Galambos (1978).
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